Dielectric Relaxation of Benzonitrile in Benzene

Rajesh Kumar^a, Nagesh Thakur^a, and Rajendra S. Bisht^b

 ^a Electronics Research Laboratory, Department of Physics, H. P. University, Shimla-171 005, Himachal Pradesh, India
^b TBRL, Chandigarh-160 030, India

Reprint requests to R. K.; E-mail: rajesh28kum@yahoo.co.in

Z. Naturforsch. **63a**, 813 – 818 (2008); received May 13, 2008

The dielectric constant, ε' , and dielectric loss, ε'' , of dilute solutions of benzonitrile (C₆H₅CN) in benzene have been measured at 9.885 GHz at 25, 30, 35, and 40 °C using standard standing microwave techniques. Following the single frequency concentration variational method of Gopala Krishna, the dielectric relaxation time, τ , and the dipole moment, μ , at various temperatures have been calculated. It was concluded that dielectric relaxation processes can be treated as rate processes just like the viscous flow process. Based on the above studies, the monomer structure of benzonitrile in benzene has been inferred. The solute-solvent molecular association of benzonitrile in benzene has been found. The energy parameters ΔH_{ε} , ΔF_{ε} , ΔS_{ε} for the dielectric relaxation process of benzonitrile in benzene at different temperatures have been calculated and compared with the corresponding energy parameters ΔH_{η} , ΔF_{η} , ΔS_{η} for the viscous flow process.

Key words: Microwave Absorption; Dielectric Relaxation; Dielectric Constant; Benzonitrile; Solute-Solvent Interaction.